AQA Maths M2

Topic Questions from Papers

Kinematics

Answers

1 (a)(i)	$a = 2 + 12e^{-t}$ $2 < a \le 14$	M1A1 B1,B1	2	Differentiating, with at least one term correct. Correct velocity For 2, For 14	
(ii)	2 < <i>u</i> ≤ 14	В1,Б1	3	Correct inequalities	
(b)	$s = t^2 + 12e^{-t} + c$	M1 A1		Integrating, with at least one term correct. Correct expression with or without <i>c</i>	
	$s = 0, t = 0 \Rightarrow c = -12$ $s = t^2 + 12e^{-t} - 12$	dM1		Finding c	 PMT
	$s = t^2 + 12e^{-t} - 12$	A1	4	Correct final expression	
	Total		9		

(Q3, Jan 2006)

F

2 (a)	$\mathbf{v} = (6t^2 - 2t)\mathbf{i} + (1 - 12t^2)\mathbf{j}$	M1 A1 A1	3	differentiating both components one component correct second component correct
(b)(i)	$\mathbf{v}\left(\frac{1}{3}\right) = \left(\frac{6}{9} - \frac{2}{3}\right)\mathbf{i} + \left(1 - \frac{12}{9}\right)\mathbf{j} = -\frac{1}{3}\mathbf{j}$	M1 A1	2	substituting the value for t into their \mathbf{v} correct velocity
(ii)	Travelling due south	A1ft	1	correct description (Follow through from $\mathbf{v} = \pm k\mathbf{j}$)
(c)	$\mathbf{a} = (12t - 2)\mathbf{i} - 24t\mathbf{j}$ $\mathbf{a}(4) = 46\mathbf{i} - 96\mathbf{j}$	M1 A1 A1	3	differentiating their velocity correct acceleration at time t correct acceleration at $t = 4$
(d)	$\mathbf{F} = 6(46\mathbf{i} - 96\mathbf{j}) = 276\mathbf{i} - 576\mathbf{j}$	M1		apply Newton's second law correctly
	$F = \sqrt{276^2 + 576^2} = 639 \text{ N}$ or $a = \sqrt{46^2 + 96^2} = 106.45$	M1 A1	3	finding magnitude correct magnitude
	$F = 6 \times 106.45 = 639 \text{ N}$		12	
			12	

(Q1, June 2006)

3 (a)(i)	$t = 0, \mathbf{r} = 2\mathbf{i} + 10\mathbf{k}$	B1	1	
(ii)	$t = 2\pi, \ \mathbf{r} = 2\mathbf{i} + 7.49\mathbf{k}$	B1	1	Or $\mathbf{r} = 2\mathbf{i} + (10 - 0.8\pi)\mathbf{k}$ accept 7.5 \mathbf{k}
(iii)	$t=2\pi,$ $t=4\pi$	B1 B1	2	
(b)	$\mathbf{v} = -2\sin t\mathbf{i} + 2\cos t\mathbf{j} - 0.4\mathbf{k}$	M1 A1 A1	3	Differentiation Trig k
(c)	$\mathbf{a} = -2\cos t \mathbf{i} - 2\sin t \mathbf{j}$ $\mathbf{F} = -50\cos t \mathbf{i} - 50\sin t \mathbf{j}$ $ \mathbf{F} = \sqrt{50^2 \cos^2 t + 50^2 \sin^2 t}$	M1A1 M1 M1		No unit vectors
	$ \mathbf{F} = 50(N)$	A1	5	00.47
	Total		12	PMT

(Q5, Jan 2007)

	Total		11	
	$\mathbf{r} = (\frac{3}{2}t^2 + 6t + 2)\mathbf{i} + (30t - t^3 + 5)\mathbf{j}$	A1	5	
	$\therefore \mathbf{d} = 2\mathbf{i} + 5\mathbf{j}$	M1		
	When $t = 0$, $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j}$			
	$= (\frac{3}{2}t^2 + 6t)\mathbf{i} + (30t - t^3)\mathbf{j} + \mathbf{d}$	A1,A1		A1 i term, A1 j term; condone no '+ d'
Ì	•			
(0	$\mathbf{r} = \int \mathbf{v} dt$	M1		
	$\mathbf{v} = (3t+6)\mathbf{i} + (30-3t^2)\mathbf{j}$	A1	4	AG
	$\therefore \mathbf{c} = 6\mathbf{i} + 30\mathbf{j}$	M1		Needs '+ c' above
	When $t = 0$, $\mathbf{v} = 6\mathbf{i} + 30\mathbf{j}$			
	$=3t\mathbf{i}-3t^2\mathbf{j}+\mathbf{c}$	A1		Condone no '+ c'
(h	$\mathbf{v} = \int \mathbf{a} dt$ $= 3t\mathbf{i} - 3t^2\mathbf{j} + \mathbf{c}$	M1		
a		3.61		
	$\mathbf{a} = 3\mathbf{i} - 6t\mathbf{j}$	A1	2	
Ì	$2400\mathbf{i} - 4800t\mathbf{j} = 800\mathbf{a}$	M1		
4 (a	Using $F = ma$:			

(Q3, June 2007)

5 (a)(i)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 6\cos 3t$	M1A1	2	M1 for at least one term correct
(ii)	When $t = \frac{\pi}{3}$, $a = 6 \times \frac{\pi}{3} - 6\cos(3 \cdot \frac{\pi}{3})$ = $2\pi + 6$	M1 A1	2	AG
(b)	$r = t^3 + \frac{2}{3}\cos 3t + 6t + c$	M1A1		M1 for 3 terms including $\cos 3t$ term Condone no '+ c'
	When $t = 0$, $r = 0$: $c = -\frac{2}{3}$: $r = t^3 + \frac{2}{3}\cos 3t + 6t - \frac{2}{3}$	M1		
	$\therefore r = t^3 + \frac{2}{3}\cos 3t + 6t - \frac{2}{3}$	A1	4	
	Total		8	

(Q2, Jan 2008)

6 (a)	$\mathbf{v} = \frac{\mathrm{d}r}{\mathrm{d}t}$				
	$\mathbf{v} = (3t^2 - 6t)\mathbf{i} + (4 + 2t)\mathbf{j}$	M1A1	2		
(b)(i)	$\mathbf{a} = (6t - 6)\mathbf{i} + 2\mathbf{j}$	M1 A1ft			
	Using $\mathbf{F} = \mathbf{ma}$:		'		
	$\mathbf{F} = (18t - 18)\mathbf{i} + 6\mathbf{j}$	A1ft	3		
(ii)	When $t = 3$, F = $36i + 6j$				
	Magnitude is $\sqrt{36^2 + 6^2}$	M1	'		
	= 36.5	A1ft	2	Accept $6\sqrt{37}$; ft from (b)(i)	
(c)	When F acts due north:				
	Component of F in the i direction is 0 18t - 18 = 0	M1			
	t=1	A1ft	2	ft from (b)(i)	
	Total		9		$ ceil_{PMT}$

(Q4, Jan 2008)

7 (a)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 12t + 4$	M1 A1	2	
(b)	Using $F = ma$, Force = $3 \times (12t + 4)$ When $t = 4$, force = $3(12 \times 4 + 4)$ Force = 156 N	M1 A1	2	
(c)	$r = 2t^{3} + 2t^{2} - 7t + c$ When $t = 0$, $r = 5$, $\therefore c = 5$ $\therefore r = 2t^{3} + 2t^{2} - 7t + 5$	M1 A1 M1 A1	4	SC3 if no '+c' seen
	Total		8	

(Q1, June 2008)

8	$r = \int v dt$	M1			
	$= t^4 + 4\cos 2t + 5t \ (+c)$	A1			
	When $t = 0$, $r = 0 \implies c = -4$ $\therefore r = t^4 + 4\cos 2t + 5t - 4$	M1 A1ft	4	Finding c correctly	1
	Total		4		

PMT

(Q1, Jan 2009)

9 (a)	$\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$	M1			
	$\mathbf{v} = (e^{\frac{1}{2}t} - 8)\mathbf{i} + (2t - 6)\mathbf{j}$	A1 A1	3	i terms j terms	
	3/2 (== 5/9	AI	3		
(b)(i)	When $t = 3$, $\mathbf{v} = -3.52\mathbf{i}$	B1		Accept $(e^{\frac{3}{2}} - 8)\mathbf{i}$	
	Speed is 3.52 m s ⁻¹	B1	2	3.5 does not give 2 nd B mark	
(ii)	West	B1	1		
	1 1,				
(c)	$\mathbf{a} = \frac{1}{2} e^{\frac{1}{2}t} \mathbf{i} + 2\mathbf{j}$	M1A1			
	When $t = 3$, $\mathbf{a} = \frac{1}{2}e^{\frac{3}{2}}\mathbf{i} + 2\mathbf{j}$ or $2.24\mathbf{i} + 2\mathbf{j}$	A1	3		
(d)	Using $\mathbf{F} = m\mathbf{a}$:	M1		Accept $\mathbf{F} = 7\mathbf{a}$	
	$\mathbf{F} = 7(\frac{1}{2}e^{\frac{3}{2}}\mathbf{i} + 2\mathbf{j})$				
	∴ Magnitude of force is				
	$7\left((\frac{1}{2}e^{\frac{3}{2}})^2 + 2^2\right)^{\frac{1}{2}}$	M1			
	$\mathbf{F} = 21.025$	A 1			
	$\mathbf{F} = 21.0$ Total	A1	3 12	Accept 21	<i>PM</i> :

(Q3, Jan 2009)

 \boldsymbol{x}

 \boldsymbol{x}

10 (a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = (3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j}$	M1A1 A1	3	A1 (i terms) A1 (j terms)
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$:			
	Force = $4 \times \{(3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j}\}$	M1		
	$= (12t^2 - 60)\mathbf{i} + (24 - 8t)\mathbf{j}$	A1	2	AG
(ii)	When $t = 2$, force $= -12\mathbf{i} + 8\mathbf{j}$	M1A1		
	Magnitude of force = $\sqrt{12^2 + 8^2}$ N	M1		
	= 14.4 (N)	A1	4	
	Total		9	

(Q1, June 2009)

11 (a)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		M1 for at least one term correct
	$= (t^4 - 6t^2 + 3t)\mathbf{i} + 5t\mathbf{j} + 4t^2\mathbf{k} + \mathbf{c}$	A1m1		$m1 \text{ for } + \mathbf{c}$
	When $t=0$, $\mathbf{r}=-5\mathbf{i}+6\mathbf{k}$ \therefore $\mathbf{c}=-5\mathbf{i}+6\mathbf{k}$ \therefore $\mathbf{r}=(t^4-6t^2+3t-5)\mathbf{i}+5t\mathbf{j}+(6+4t^2)\mathbf{k}$	A1	4	
(b)	$\mathbf{a} = (12t^2 - 12)\mathbf{i} + 8\mathbf{k}$	M1A1	2	M1 for either component
(c)	Magnitude is $\left\{ \left(12t^2 - 12 \right)^2 + 64 \right\}^{\frac{1}{2}}$	M1 A1F	2	
(d)	Magnitude is a minimum when $12t^2 - 12$	M1		M1 for correct differentiation of correct
	is zero ie when $t = 1$	A1	2	expression in (c)
(e)	Minimum acceleration is 8			
	Using $F = ma$,	M1		a could be a vector
	$F=7\times8=56$	A1	2	CAO
	Total		12	

(Q4, Jan 2010)

12	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$ $= 10t - 12\sin 4t$	M1 A1A1	3	M1 for either $\frac{ds}{dt}$ or 1 of 2 terms correct (ignore signs)
	Total		3	

(Q1, June 2010)

13 (a)	Using $\mathbf{F} = m\mathbf{a}$,			
13 (a)	_	M1		
	$400\cos\frac{\pi}{2} \ t \mathbf{i} + 600t^2 \mathbf{j} = 200 \mathbf{a}$	M1		
	$\mathbf{a} = 2\cos\frac{\pi}{2} t \mathbf{i} + 3t^2 \mathbf{j}$	A1	2	
	_			
(b)	$\mathbf{v} = \int a dt$	M1		M1 for either $\int a dt$ or 1 of 2 terms correct
	$= \frac{4}{\pi} \sin \frac{\pi}{2} t \mathbf{i} + t^3 \mathbf{j} + \mathbf{c}$	A1m1		$m1 \text{ for } + \mathbf{c}$
	π 2			
	When $t = 4$, $\mathbf{r} = -3\mathbf{i} + 56\mathbf{j}$,			
	$64\mathbf{j} + \mathbf{c} = -3\mathbf{i} + 56\mathbf{j}$	m1		
	$\therefore \mathbf{c} = -3\mathbf{i} - 8\mathbf{j}$			
	$\mathbf{v} = (\frac{4}{\pi}\sin\frac{\pi}{2}t - 3)\mathbf{i} + (t^3 - 8)\mathbf{j}$	A1	5	Do not accept $\frac{2}{\frac{\pi}{2}}$ Accept 1.27 for $\frac{4}{\pi}$
	π 2	711	3	$\frac{\pi}{2}$ π
(c)	When particle is moving due west,			
	northerly component is zero	M1		
	$\therefore t^3 - 8 = 0$	A1√		
	t=2	A1	3	
(d)	When $t = 2$, $\mathbf{v} = -3\mathbf{i} + 0\mathbf{j}$	B1√		
	Speed of particle is 3 m s ⁻¹	B1	2	B1 for change –3 to +3
	Total		12	

(Q4, June 2010) PMT

14 (a)	$\mathbf{r} = \int v dt$ $= (4t + t^3)\mathbf{i} + (12t - 4t^2)\mathbf{j} + \mathbf{c}$	M1A1		M1 either i or j term correct. Condone no c
	When $t = 0$, $\mathbf{r} = 5\mathbf{i} - 7\mathbf{j}$ $\mathbf{c} = 5\mathbf{i} - 7\mathbf{j}$	M1		Any attempt at c
	$\mathbf{r} = (5 + 4t + t^3)\mathbf{i} + (-7 + 12t - 4t^2)\mathbf{j}$	A1	4	
(b)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$			
	$\mathbf{a} = 6t \mathbf{i} - 8 \mathbf{j}$	M1A1	2	M1 either term correct
(c)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{j})$	M1		Or: using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{j})$
	= $12t \mathbf{i} - 16 \mathbf{j}$ ∴ Magnitude of force is	A1		When $t = 1$, $\mathbf{F} = 12 \mathbf{i} - 16 \mathbf{j}$
	$(144t^2 + 256)^{\frac{1}{2}}$ when $t = 1$	M1		Magnitude of force is $(144 + 256)^{\frac{1}{2}}$
	= 20 N	A1	4	= 20 N
	Total		10	

15 (a)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$ $\mathbf{a} = -8\mathrm{e}^{-2t}\mathbf{i} + (6-6t)\mathbf{j}$	M1 A1 A1	3	M1: Differentiating with either of the two components correct. Do not need to see i or j . A1: Correct i component. A1: Correct j component.
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 5 \times \{-8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}\}$ $= -40e^{-2t}\mathbf{i} + (30-30t)\mathbf{j}$	M1 A1	2	M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression.
(ii)	Magnitude of F is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two non-zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$
	= 50	A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
(c)	When F acts due west, j component is zero $30 - 30t = 0$ $t = 1$	M1 A1	2	M1: Putting j component equal to zero. A1: Correct time.
(d)	$\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$	M1 A1 A1		M1: Integration with either of the two components correct. Do not need to see i or j . A1: Correct i component. A1: Correct j component. Condone lack of + c
	When $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j}$: $\mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$	dM1		dM1: Finding c using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$.
	:. $\mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$ Total	A1	5 14	A1: Correct position vector.

(Q3, June 2011)

			1
=	65.3	m	\mathbf{S}^{-1}

	Total		8	
16 (a)	using $\mathbf{F} = m\mathbf{a}$: $\mathbf{a} = (6t - 1.2 t^2) \mathbf{i} + 2 e^{-2t} \mathbf{j}$	M1 A1	2	ie dividing by 50
(b)	J J			
	= $(3 t^2 - 0.4 t^3) \mathbf{i} - e^{-2t} \mathbf{j} + \mathbf{c}$	M1A1		condone lack of + c; M1 one term correct
	when $t = 0$, $\mathbf{r} = 7 \mathbf{i} - 4 \mathbf{j}$			21
	$\mathbf{c} = 7 \mathbf{i} - 3 \mathbf{j}$ $\mathbf{v} = (7 + 3 t^2 - 0.4 t^3) \mathbf{i} - (3 + e^{-2t}) \mathbf{j}$	m1A1	4	ft from ke ^{-2t} in (b); just adding 7 i – 4 j , m0 accept unsimplified. CAO
(c)	when $t = 1$, $\mathbf{v} = 9.6 \mathbf{i} - 3.135 \mathbf{j}$	M1A1		ft from (b)
	speed = $\sqrt{9.6^2 + 3.135^2}$	m1		
	$= 10.1 \text{ ms}^{-1}$	A1	4	ft from (b)
	Total		10	

(Q2, Jan 2012)

_

17 (a)(i)	$a = \frac{dv}{dt}$			
	$= 12t + 8e^{-4t} \text{ m s}^{-2}$	M1A1	2	M1 for either term correct
(ii)	When $t = 0.5$, $a = 6 + 8 \times e^{-2}$ = 7.08 m s ⁻²	m1 A1	2	Condone 7.07 SC1 for 7.1 with no working
(b)	Using $F = ma$: $F = 4 \times 7.08$ = 28.3 N	B1ft	1	Ft from value awarded A1
(c)	$r = \int v dt$ $= 2t^3 + \frac{1}{2}e^{-4t} + 8t + c$ When $t = 0, r = 0 \rightarrow c = -\frac{1}{2}$	M1		At least two terms correct
	$=2t^3 + \frac{1}{2}e^{-4t} + 8t + c$	A1		Does not need $+c$
	When $t = 0$, $r = 0 \rightarrow c = -\frac{1}{2}$	m1		Does not need $c = -\frac{1}{2}$
	$r = 2t^3 + \frac{1}{2}e^{-4t} + 8t - \frac{1}{2}$	A1	4	Need r , s (or words)
	Total		9	

(Q2, June 2012)

18	(a)	Distance of particle from the origin is				
-	` ´	$\left\{ (4\cos 3t)^2 + (4\sin 3t)^2 \right\}^{\frac{1}{2}}$	M1			
		= 4 which is a constant∴ particle is moving in a circle centre the origin	A1	2		РМТ
	(b)	$\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ $\mathbf{v} = -12\sin 3t \mathbf{i} - 12\cos 3t \mathbf{j}$	M1A1	2	M1 for either term correct	
	(c)	$\mathbf{a} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t}$ $\mathbf{a} = -36\cos 3t \mathbf{i} + 36\sin 3t \mathbf{j}$	M1A1	2	M1 for either term correct	
	(d)	$\mathbf{a} = -9 (4 \cos 3t \mathbf{i} - 4 \sin 3t \mathbf{j})$ $= -9 \mathbf{r}$ $k = -9$	B2	2	B1 for 9	
	(e)	Acceleration is towards centre of circle (or origin)	E1	1		
		Total		9		

(Q4, June 2012)

19 (a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1		
	$= -4\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 18t\mathbf{j}$	A1	2	M1 for either term correct $Accept -12 \times \frac{\pi}{3} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 18t \mathbf{j} \text{ condone}$ no \mathbf{i} in (\mathbf{a})
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$:			
	$\mathbf{F} = 4 \times \left[-4\pi \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 18t \mathbf{j} \right]$	M1		Or either term correct
	$\mathbf{F} = -16\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 72t\mathbf{j}$	A1	2	
(ii)	When $t = 3$, $\mathbf{F} = 4 \times [-4\pi \sin(\pi)\mathbf{i} - 54\mathbf{j}]$			
	= - 216 j Magnitude is 216	B1 B1ft	2	ft finding magnitude of their F
(c)	J	M1		either term correct
	$= \frac{36}{\pi} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 3t^3 \mathbf{j} + \mathbf{c}$	A1		No need for c (otherwise cao) Condone $\frac{12}{\left(\frac{\pi}{3}\right)}$
	When $t = 3$, $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j}$ $\rightarrow -81\mathbf{j} + \mathbf{c} = 4\mathbf{i} - 2\mathbf{j}$	M1		,, <u>-</u> ,
	$\mathbf{c} = 4\mathbf{i} + 79\mathbf{j}$	A1		
	$\mathbf{r} = \left\{ \frac{36}{\pi} \sin\left(\frac{\pi}{3}t\right) + 4 \right\} \mathbf{i} + \{79 - 3t^3\} \mathbf{j}$	A1	5	cao
	Total		11	(Q2, Jan 2013)

	When $t = 2$, $a = 96$	B1		PhysicsAndMathsTutor.com
	Using E = ma			FilysicsAndiviatins Lutor.com
	Using $F = ma$ $F = 3 \times 96$	M1		
	= 288 N	A1	4	
(a)	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$ Total	M1	6	
	$KE24t^{2} \times 52 \times 7^{2}$	A1	2	
(b)	$a = \frac{\overline{d}_V}{\overline{d}_t} 1274 J$	A1	2	
(b)	$ \frac{dt}{\text{Change in PE: } mgh = 52 \times 9.8 \times 8} $	₩1		
	When $t = 2$, $a = 96$ = 4076.8	₽ 1		
	Carol's KE when she reaches the net Using $F = mq$ = 1274 ± 4076.8 J = 5350.8 J			
	F = 350 96 = 288 N	M1 A1	3	
	5350.8 Total		6	
	$KE = \frac{1}{2} \times 52 \times 7^2 \qquad \frac{1}{2} \times 52$			(Q1, June 2013)
	$= 14 = 34374 \text{nJ s}^{-1}$	A1	2	
	= 14 .3 1 2 3 70 J	A 1	3	
	Total		8	
(b) (a)	Change in PE: $mgh = 52 \times 9.8 \times 8$ = 4076.8 = $(20t^2 + t^3)\mathbf{i} - 5e^{-4t}\mathbf{j} + \mathbf{c}$	M1 A1 M1A1		M1 for either term correct
	Carol's KE when she reaches the net $\underline{\underline{W}}$ have $\pm 4076.8 \text{ J} = 5350.8 \text{ J}$			Condone no '+ c'
		Mi	3	Finding '+ c'; not using $\mathbf{c} = 6\mathbf{i} - 5e^{-4}\mathbf{j}$

21 (b)	$Change in PE: mgh = 52 \times 9.8 \times 8$	M1		
21 (a)	$v - \int u du = 4076.8$	A1		
	= 4076.8 = $(20t^2 + t^3)\mathbf{i} - 5e^{-4t}\mathbf{j} + \mathbf{c}$	M1A1		M1 for either term correct
	Carol's KE when she reaches the net			Condone no '+ c'
		M 1	3	Finding '+ \mathbf{c} '; not using $\mathbf{c} = 6\mathbf{i} - 5\mathbf{e}^{-4}\mathbf{j}$
	$\mathbf{c} = -15\mathbf{i}$	A1		
	$\mathbf{c} = -15\mathbf{i}$ $\mathbf{v} = (20t^2 + t^3 - 15)\mathbf{i} - 58 - 52 - 52$	A1	5	
(b)	Where $4570_{\rm m}$ y ± -15 i -5 j	M1		
	$= 14.3 \text{ m s}^{-1}$	A1	3	
	Speed is $\sqrt{15^2 + 5^2}$ Total	M1	8	
	$v = \int a dt$ = 15.8 m s ⁻¹	A1	3	Accept $5\sqrt{10}$
	$=(20t^2+t^3)\mathbf{i}-5e^{-4t}\mathbf{i}+\mathbf{c}$	M1A1		M1 for either term correct
	Total		8	Condone no '+ \mathbf{c} '

When t = 1, $6\mathbf{i} - 5e^{-4}\mathbf{j} = 21\mathbf{i} - 5e^{-4}\mathbf{j} + \mathbf{c}$

20

M1

Finding '+ c'; not using $\mathbf{c} = 6\mathbf{i} - 5\mathbf{e}^{2}$

 $\mathbf{c} = -15\mathbf{i}$ $\mathbf{v} = (20t^2 + t^3 - 15)\mathbf{i} - 5e^{-4t}\mathbf{j}$

A1

(b) When t = 0, $\mathbf{v} = -15\mathbf{i} - 5\mathbf{j}$

Speed is $15^2 + 5^2$

 $= 15.8 \text{ m s}^{-1}$

5 10

Total

8