AQA Maths M2

Topic Questions from Papers

Kinematics

Answers

1 (a)(i) (ii) (b)	$\begin{aligned} & a=2+12 e^{-t} \\ & 2<a \leq 14 \\ & s=t^{2}+12 e^{-t}+c \\ & s=0, t=0 \Rightarrow c=-12 \\ & s=t^{2}+12 e^{-t}-12 \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { B1,B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { dM1 } \\ \text { A1 } \end{gathered}$	2 3 3	Differentiating, with at least one term correct. Correct velocity For 2, For 14 Correct inequalities Integrating, with at least one term correct. Correct expression with or without c Finding c Correct final expression
	Total		9	

(Q3, Jan 2006)

2 (a)	$\mathbf{v}=\left(6 t^{2}-2 t\right) \mathbf{i}+\left(1-12 t^{2}\right) \mathbf{j}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	differentiating both components one component correct second component correct
(b)(i)	$\mathbf{v}\left(\frac{1}{3}\right)=\left(\frac{6}{9}-\frac{2}{3}\right) \mathbf{i}+\left(1-\frac{12}{9}\right) \mathbf{j}=-\frac{1}{3} \mathbf{j}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	substituting the value for t into their \mathbf{v} correct velocity
(ii)	Travelling due south	A1ft	1	correct description (Follow through from $\mathbf{v}= \pm k \mathbf{j}$)
(c)	$\begin{aligned} & \mathbf{a}=(12 t-2) \mathbf{i}-24 t \mathbf{j} \\ & \mathbf{a}(4)=46 \mathbf{i}-96 \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	differentiating their velocity correct acceleration at time t correct acceleration at $t=4$
(d)	$\mathbf{F}=6(46 \mathbf{i}-96 \mathbf{j})=276 \mathbf{i}-576 \mathbf{j}$	M1		apply Newton's second law correctly
	$F=\sqrt{276^{2}+576^{2}}=639 \mathrm{~N}$ or $\begin{aligned} & a=\sqrt{46^{2}+96^{2}}=106.45 \\ & F=6 \times 106.45=639 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	finding magnitude correct magnitude
	Total		12	

3 (a)(i)	$t=0, \mathbf{r}=2 \mathbf{i}+10 \mathbf{k}$	B1	1	
(ii)	$t=2 \pi, \mathbf{r}=2 \mathbf{i}+7.49 \mathbf{k}$	B1	1	Or $\mathbf{r}=2 \mathrm{i}+(10-0.8 \pi) \mathbf{k} \quad$ accept $7.5 \mathbf{k}$
(iii)	$t=2 \pi, \quad t=4 \pi$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(b)	$\mathbf{v}=-2 \sin t \mathbf{i}+2 \cos t \mathbf{j}-0.4 \mathbf{k}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Differentiation Trig k
(c)	$\begin{aligned} & \mathbf{a}=-2 \cos t \mathbf{i}-2 \sin t \mathbf{j} \\ & \mathbf{F}=-50 \cos t \mathbf{i}-50 \sin t \mathbf{j} \\ & \|\mathbf{F}\|=\sqrt{50^{2} \cos ^{2} t+50^{2} \sin ^{2} t} \\ & \|\mathbf{F}\|=50(\mathrm{~N}) \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	5	No unit vectors
			12	

(Q5, Jan 2007)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
4 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Using } F=m a: \\
\& 2400 \mathbf{i}-4800 t \mathbf{j}=800 \mathbf{a} \\
\& \mathbf{a}=3 \mathbf{i}-6 t \mathbf{j} \\
\& \begin{aligned}
\mathbf{v} \& =\int \mathbf{a} \mathrm{d} t \\
\& =3 t \mathbf{i}-3 t^{2} \mathbf{j}+\mathbf{c}
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
\& \text { When } t=0, \mathbf{v}=6 \mathbf{i}+30 \mathbf{j} \\
\& \therefore \mathbf{c}=6 \mathbf{i}+30 \mathbf{j} \\
\& \therefore \mathbf{v}=(3 t+6) \mathbf{i}+\left(30-3 t^{2}\right) \mathbf{j} \\
\& \mathbf{r}=\int \mathbf{v} \mathrm{d} t \\
\& \quad=\left(\frac{3}{2} t^{2}+6 t\right) \mathbf{i}+\left(30 t-t^{3}\right) \mathbf{j}+\mathbf{d}
\end{aligned}
\] \\
When \(t=0, \quad \mathbf{r}=2 \mathbf{i}+5 \mathbf{j}\)
\[
\begin{aligned}
\& \therefore \mathbf{d}=2 \mathbf{i}+5 \mathbf{j} \\
\& \therefore \mathbf{r}=\left(\frac{3}{2} t^{2}+6 t+2\right) \mathbf{i}+\left(30 t-t^{3}+5\right) \mathbf{j}
\end{aligned}
\]
\end{tabular} \& M1
A1
M1
A1
M1
A1
M1
A1,A1
M1
A1 \& 2

4

5 \& | Condone no ' $+\mathbf{c}$ ' |
| :--- |
| Needs ' $+\mathbf{c}$ ' above |
| AG |
| A1 \mathbf{i} term, $\mathrm{A} 1 \mathbf{j}$ term; condone no ' $+\mathbf{d}$ ' |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

(Q3, June 2007)

5 (a)(i)	$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=6 t-6 \cos 3 t$	M1A1	2	M1 for at least one term correct
(ii)	$\text { When } \begin{aligned} t=\frac{\pi}{3}, a & =6 \times \frac{\pi}{3}-6 \cos \left(3 \cdot \frac{\pi}{3}\right) \\ & =2 \pi+6 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	AG
(b)	$r=t^{3}+\frac{2}{3} \cos 3 t+6 t+c$	M1A1		M1 for 3 terms including $\cos 3 t$ term Condone no ' $+c$ '
	When $t=0, r=0 \therefore c=-\frac{2}{3}$	M1		
	$\therefore r=t^{3}+\frac{2}{3} \cos 3 t+6 t-\frac{2}{3}$	A1	4	
	Total		8	

(Q2, Jan 2008)

(Q4, Jan 2008)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
7 (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& a=\frac{\mathrm{d} v}{\mathrm{~d} t}=12 t+4 \\
\& \text { Using } F=m a, \\
\& \text { Force }=3 \times(12 t+4) \\
\& \text { When } t=4, \text { force }=3(12 \times 4+4) \\
\& \text { Force }=156 \mathrm{~N} \\
\& r=2 t^{3}+2 t^{2}-7 t+c
\end{aligned}
\] \\
When \(t=0, r=5, \quad \therefore c=5\)
\[
\therefore r=2 t^{3}+2 t^{2}-7 t+5
\]
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 \\
A1 \\
M1 A1 \\
M1 \\
A1
\end{tabular} \& 2

2

4
4 \& SC3 if no ' $+c$ ' seen

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

(Q1, June 2008)

8	$r=\int v \mathrm{~d} t$ $=t^{4}+4 \cos 2 t+5 t(+c)$ $r r=t^{4}+4 \cos 2 t+5 t-4$	M1		
	A1			

(Q1, Jan 2009)

9 (a)	$\begin{aligned} & \mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t} \\ & \mathbf{v}=\left(\mathrm{e}^{\frac{1}{2} t}-8\right) \mathbf{i}+(2 t-6) \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	i terms j terms
(b)(i)	When $t=3, \mathbf{v}=-3.52 \mathbf{i}$ Speed is $3.52 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Accept $\left(\mathrm{e}^{\frac{3}{2}}-8\right) \mathbf{i}$ 3.5 does not give $2^{\text {nd }} B$ mark
(ii)	West	B1	1	
(c)	$\mathbf{a}=\frac{1}{2} \mathrm{e}^{\frac{1}{2} t} \mathbf{i}+2 \mathbf{j}$	M1A1		
	When $t=3, \mathbf{a}=\frac{1}{2} \mathrm{e}^{\frac{3}{2}} \mathbf{i}+2 \mathbf{j}$ or $2.24 \mathbf{i}+2 \mathbf{j}$	A1	3	
(d)	Using $\mathbf{F}=m \mathbf{a}$: $\mathbf{F}=7\left(\frac{1}{2} \mathrm{e}^{\frac{3}{2}} \mathbf{i}+2 \mathbf{j}\right)$	M1		Accept $\mathbf{F}=7 \mathbf{a}$
	\therefore Magnitude of force is $7\left(\left(\frac{1}{2} e^{\frac{3}{2}}\right)^{2}+2^{2}\right)^{\frac{1}{2}}$	M1		
	$\begin{aligned} & \mathbf{F}=21.025 \\ & \mathbf{F}=21.0 \end{aligned}$	A1	3	Accept 21
	Total		12	

(Q3, Jan 2009)

10 (a) $\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=\left(3 t^{2}-15\right) \mathbf{i}+(6-2 t) \mathbf{j}$
(b)(i) Using $\mathbf{F}=m \mathbf{a}$:

$$
\begin{aligned}
\text { Force } & =4 \times\left\{\left(3 t^{2}-15\right) \mathbf{i}+(6-2 t) \mathbf{j}\right\} \\
& =\left(12 t^{2}-60\right) \mathbf{i}+(24-8 t) \mathbf{j}
\end{aligned}
$$

(ii) When $t=2$, force $=-12 \mathbf{i}+8 \mathbf{j}$

Magnitude of force $=\sqrt{12^{2}+8^{2}} \mathrm{~N}$ $=14.4(\mathrm{~N})$

M1A1	3	A1 (i terms)	A1 (j terms)
A1			
M1			
A1	2	AG	
M1A1			
M1			
A1	4		
		$\mathbf{9}$	

11 (a)	$\begin{aligned} & \mathbf{r}=\int \mathbf{v} \mathrm{d} t \\ & =\left(t^{4}-6 t^{2}+3 t\right) \mathbf{i}+5 t \mathbf{j}+4 t^{2} \mathbf{k}+\mathbf{c} \end{aligned}$ When $t=0, \mathbf{r}=-5 \mathbf{i}+6 \mathbf{k} \quad \therefore \mathbf{c}=-5 \mathbf{i}+6 \mathbf{k}$ $\therefore \mathbf{r}=\left(t^{4}-6 t^{2}+3 t-5\right) \mathbf{i}+5 t \mathbf{j}+\left(6+4 t^{2}\right) \mathbf{k}$	M1 A1m1 A1	4	M1 for at least one term correct ml for $+\mathbf{c}$
(b)	$\mathbf{a}=\left(12 t^{2}-12\right) \mathbf{i}+8 \mathbf{k}$	M1A1	2	M1 for either component
(c)	Magnitude is $\left\{\left(12 t^{2}-12\right)^{2}+64\right\}^{\frac{1}{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	
(d)	Magnitude is a minimum when $12 t^{2}-12$ is zero ie when $t=1$	M1 A1	2	M1 for correct differentiation of correct expression in (c)
(e)	Minimum acceleration is 8 Using $\mathrm{F}=m a$, $\mathrm{F}=7 \times 8=56$	M1 A1	2	a could be a vector CAO
	Total		12	

(Q4, Jan 2010)
$\left.\begin{array}{|l|ll|c|c|c|}\hline 12 & \begin{array}{ll}v=\frac{\mathrm{d} s}{\mathrm{~d} t} & \text { M1 } \\ & \\ & =10 t-12 \sin 4 t\end{array} & & \text { M1 for either } \frac{\mathrm{d} s}{\mathrm{~d} t} \text { or } 1 \text { of } 2 \text { terms correct } \\ \text { (ignore signs) }\end{array}\right]$

13 (a) Using $\mathbf{F}=m \mathbf{a}$,
$400 \cos \frac{\pi}{2} t \mathbf{i}+600 t^{2} \mathbf{j}=200 \mathbf{a}$
$\mathbf{a}=2 \cos \frac{\pi}{2} t \mathbf{i}+3 t^{2} \mathbf{j}$
(b) $\mathbf{v}=\int a \mathrm{~d} t$
$=\frac{4}{\pi} \sin \frac{\pi}{2} t \mathbf{i}+t^{3} \mathbf{j}+\mathbf{c}$

When $t=4, \mathbf{r}=-3 \mathbf{i}+56 \mathbf{j}$,
$64 \mathbf{j}+\mathbf{c}=-3 \mathbf{i}+56 \mathbf{j}$
$\therefore \mathbf{c}=-3 \mathbf{i}-8 \mathbf{j}$
$\therefore \mathbf{v}=\left(\frac{4}{\pi} \sin \frac{\pi}{2} t-3\right) \mathbf{i}+\left(t^{3}-8\right) \mathbf{j}$
(c) When particle is moving due west,
northerly component is zero
$\therefore t^{3}-8=0$
$t=2$
(d) When $t=2, \mathbf{v}=-3 \mathbf{i}+0 \mathbf{j}$

Speed of particle is $3 \mathrm{~m} \mathrm{~s}^{-1}$

(Q4, June 2010)

14 (a) $\mathbf{r}=\int v \mathrm{~d} t$
$=\left(4 t+t^{3}\right) \mathbf{i}+\left(12 t-4 t^{2}\right) \mathbf{j}+\mathbf{c}$

When $t=0, \mathbf{r}=5 \mathbf{i}-7 \mathbf{j}$
$\mathbf{c}=5 \mathbf{i}-7 \mathbf{j}$
$\mathbf{r}=\left(5+4 t+t^{3}\right) \mathbf{i}+\left(-7+12 t-4 t^{2}\right) \mathbf{j}$
(b) $\mathbf{a}=\frac{\mathrm{d} v}{\mathrm{~d} t}$
$\mathbf{a}=6 t \mathbf{i}-8 \mathbf{j}$
(c) Using $\mathbf{F}=m \mathbf{a}$
$\mathbf{F}=2(6 t \mathbf{i}-8 \mathbf{j})$
$=12 t \mathbf{i}-16 \mathbf{j}$
\therefore Magnitude of force is
$\left(144 t^{2}+256\right)^{\frac{1}{2}}$ when $t=1$
$=20 \mathrm{~N}$

M1 either \mathbf{i} or \mathbf{j} term correct.
Condone no c

Any attempt at \mathbf{c}

M1 either term correct

Or: using $\mathbf{F}=m \mathbf{a}$
$\mathbf{F}=2(6 t \mathbf{i}-8 \mathbf{j})$
When $t=1, \mathbf{F}=12 \mathbf{i}-16 \mathbf{j}$

Magnitude of force is $(144+256)^{\frac{1}{2}}$
$=20 \mathrm{~N}$

15 (a)	$\begin{aligned} & \mathbf{a}=\frac{\mathrm{d} v}{\mathrm{~d} t} \\ & \mathbf{a}=-8 \mathrm{e}^{-2 t} \mathbf{i}+(6-6 t) \mathbf{j} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	M1: Differentiating with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1: Correct i component. A1: Correct \mathbf{j} component.
(b)(i)	Using $\mathbf{F}=m \mathbf{a}$ $\mathbf{F}=5 \times\left\{-8 \mathrm{e}^{-2 t} \mathbf{i}+(6-6 t) \mathbf{j}\right\}$ $=-40 \mathrm{e}^{-2 t} \mathbf{i}+(30-30 t) \mathbf{j}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression.
(ii)	Magnitude of \mathbf{F} is$\left\{(-40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two nonzero terms. Must add terms and square root. Condone $\left\{(40)^{2}+(30)^{2}\right\}^{\frac{1}{2}}$
		A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
(c)	When \mathbf{F} acts due west, \mathbf{j} component is zero $\begin{aligned} & 30-30 t=0 \\ & t=1 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	M1: Putting \mathbf{j} component equal to zero. A1: Correct time.
(d)	$\mathbf{r}=-2 \mathrm{e}^{-2 t} \mathbf{i}+\left(3 t^{2}-t^{3}\right) \mathbf{j}+\mathbf{c}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		M1: Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j}. A1: Correct \mathbf{i} component. A1: Correct \mathbf{j} component. Condone lack of $+\mathbf{c}$
	When $t=0, \mathbf{r}=6 \mathbf{i}+5 \mathbf{j} \therefore \mathbf{c}=8 \mathbf{i}+5 \mathbf{j}$	dM1		dM 1 : Finding \mathbf{c} using $6 \mathbf{i}+5 \mathbf{j}$ and $\mathrm{e}^{0}=1$.
	$\therefore \mathbf{r}=\left(8-2 \mathrm{e}^{-2 t}\right) \mathbf{i}+\left(5+3 t^{2}-t^{3}\right) \mathbf{j}$	A1	5	A1: Correct position vector.
	Total		14	

(Q2, Jan 2012)

17 (a)(i)	$\begin{aligned} \mathrm{a} & =\frac{\mathrm{d} v}{\mathrm{~d} t} \\ & =12 t+8 \mathrm{e}^{-4 t} \mathrm{~ms} \mathrm{~s}^{-2} \end{aligned}$	M1A1	2	M1 for either term correct
(ii)	$\text { When } \begin{aligned} t=0.5, \mathrm{a} & =6+8 \times \mathrm{e}^{-2} \\ & =7.08 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2	Condone 7.07 SC1 for 7.1 with no working
(b)	$\begin{aligned} \text { Using } F & =m \mathrm{a}: \\ F & =4 \times 7.08 \\ & =28.3 \mathrm{~N} \end{aligned}$	B1ft	1	Ft from value awarded A1
(c)	$r=\int v \mathrm{~d} t$	M1		At least two terms correct
	$=2 t^{3}+\frac{1}{2} \mathrm{e}^{-4 t}+8 t+c$	A1		Does not need $+c$
	When $t=0, r=0 \rightarrow c=-\frac{1}{2}$	m1		Does not need $c=-\frac{1}{2}$
	$r=2 t^{3}+\frac{1}{2} \mathrm{e}^{-4 t}+8 t-\frac{1}{2}$	A1	4	Need r, s (or words)
	Total		9	

(Q2, June 2012)

18 (a) Distance of particle from the origin is
$\left\{(4 \cos 3 t)^{2}+(4 \sin 3 t)^{2}\right\}^{\frac{1}{2}}$
$=4$ which is a constant
\therefore particle is moving in a circle centre the origin
(b) $\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}$
$\mathbf{v}=-12 \sin 3 t \mathbf{i}-12 \cos 3 t \mathbf{j}$
(c) $\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$
$\mathbf{a}=-36 \cos 3 t \mathbf{i}+36 \sin 3 t \mathbf{j}$
(d) $\mathbf{a}=-9(4 \cos 3 t \mathbf{i}-4 \sin 3 t \mathbf{j})$
$=-9 \mathbf{r}$
$k=-9$
(e) Acceleration is towards centre of circle

M1		
A1	2	
M1A1	2	M1 for either term correct
M1A1	2	M1 for either term correct
B2	2	B1 for 9
E1	1	

(Q4, June 2012)

19 (a)

\mathbf{a}	$=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$
	$=-4 \pi \sin \left(\frac{\pi}{3} t\right) \mathbf{i}-18 t \mathbf{j}$

(b)(i)
$\operatorname{Using} \mathbf{F}=m \mathbf{a}:$

$$
\mathbf{F}=4 \times\left[-4 \pi \sin \left(\frac{\pi}{3} t\right) \mathbf{i}-18 t \mathbf{j}\right]
$$

$$
\mathbf{F}=-16 \pi \sin \left(\frac{\pi}{3} t\right) \mathbf{i}-72 t \mathbf{j}
$$

(ii) When $t=3, \mathbf{F}=4 \times[-4 \pi \sin (\pi) \mathbf{i}-54 \mathbf{j}]$
$=-216 \mathbf{j}$
B1
B1ft
2
Or either term correct

A1
2
2
A1
M1 for either term correct
Accept $-12 \times \frac{\pi}{3} \sin \left(\frac{\pi}{3} t\right) \mathbf{i}-18 t \mathbf{j}$ condone no \mathbf{i} in (a)
ft finding magnitude of their F
either term correct
No need for \mathbf{c} (otherwise cao)
Condone $\frac{12}{(\pi / 3)}$
When $t=3, \mathbf{r}=4 \mathbf{i}-2 \mathbf{j}$
$\rightarrow-81 \mathbf{j}+\mathbf{c}=4 \mathbf{i}-2 \mathbf{j}$
$\mathbf{c}=4 \mathbf{i}+79 \mathbf{j}$
$\mathbf{r}=\left\{\frac{36}{\pi} \sin \left(\frac{\pi}{3} t\right)+4\right\} \mathbf{i}+\left\{79-3 t^{3}\right\} \mathbf{j}$
A1

A1

$20 \text { (a) }$ (b)	$\begin{aligned} v & =\frac{\mathrm{d} s}{\mathrm{~d} t} \\ & =24 t^{2} \end{aligned}$ $\begin{aligned} a & =\frac{\mathrm{d} v}{\mathrm{~d} t} \\ & =48 t \end{aligned}$ When $t=2, a=96$ Using $F=m a$ $\begin{aligned} F & =3 \times 96 \\ & =288 \mathrm{~N} \end{aligned}$	M1 A1 B1 B1 M1 A1	2	
	Total		6	

(Q1, June 2013)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
21 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
v \& =\int a \mathrm{~d} t \\
\& =\left(20 t^{2}+t^{3}\right) \mathbf{i}-5 \mathrm{e}^{-4 t} \mathbf{j}+\mathbf{c}
\end{aligned}
\] \\
When \(t=1\),
\[
6 \mathbf{i}-5 \mathrm{e}^{-4} \mathbf{j}=21 \mathbf{i}-5 \mathrm{e}^{-4} \mathbf{j}+\mathbf{c}
\]
\[
\begin{aligned}
\& \mathbf{c}=-15 \mathbf{i} \\
\& \mathbf{v}=\left(20 t^{2}+t^{3}-15\right) \mathbf{i}-5 \mathrm{e}^{-4 t} \mathbf{j}
\end{aligned}
\] \\
When \(t=0, \mathbf{v}=-15 \mathbf{i}-5 \mathbf{j}\) \\
Speed is \(\sqrt{15^{2}+5^{2}}\)
\[
=15.8 \mathrm{~m} \mathrm{~s}^{-1}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 5

3 \& | M1 for either term correct Condone no ' $+\mathbf{c}$ ' |
| :--- |
| Finding ' $+\mathbf{c}$ '; not using $\mathbf{c}=6 \mathbf{i}-5 \mathrm{e}^{-4} \mathbf{j}$ |
| Accept $5 \sqrt{10}$ |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

(Q3, June 2013)

